Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur J Endocrinol ; 189(3): 327-335, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37638769

RESUMO

OBJECTIVE: The essential role of ACTH on the growth and function of the human foetal adrenal (HFA) has long been recognized. In addition, many studies have suggested a role of the pituitary hormone prolactin (PRL) in the regulation of the HFA, but the effects of this hormone on steroidogenesis and gene expression are still unknown. Our objective was to investigate the effect of ACTH and PRL on the steroidogenic capacities of the HFA. DESIGN: In vitro/ex vivo experimental study. METHODS: We used a hanging drop in vitro organ culture system. First trimester HFA samples were cultured for 14 days in basal conditions or treated with ACTH, PRL, or a combination of the 2 (3 to 11 replicates depending on the experiment). Steroids were measured by liquid chromatography/tandem mass spectrometry or immunoassay, gene expression by RT-qPCR, and protein expression by immunoblot. RESULTS: ACTH significantly increased corticosterone, cortisol, and cortisone production, both by itself and when used together with PRL. PRL stimulation by itself had no effect. Combined stimulation with ACTH + PRL synergistically and selectively increased adrenal androgen (DHEAS and Δ4-androstenedione) production and CYP17A1 expression in the HFA, while treatment with each single hormone had no significant effect on those steroids. CONCLUSIONS: These results have important implications for our understanding of the hormonal cues regulating adrenal steroidogenesis in the HFA during the first trimester in physiological and pathological conditions and warrant further studies to characterize the molecular mechanisms of converging ACTH and PRL signalling to regulate CYP17A1 expression.


Assuntos
Androgênios , Prolactina , Humanos , Técnicas de Cultura de Órgãos , Esteroide 17-alfa-Hidroxilase , Hormônio Adrenocorticotrópico
2.
Cell Commun Signal ; 21(1): 69, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041625

RESUMO

The secreted protein augurin, the product of the tumor suppressor gene Ecrg4, has been identified as a peptide hormone in the human proteome in 2007. Since then, a number of studies have been carried out to highlight its structure and processing and its potential roles in physiopathology. Although augurin has been shown to be implicated in a variety of processes, ranging from tumorigenesis, inflammation and infection to neural stem cell proliferation, hypothalamo-pituitary adrenal axis regulation and osteoblast differentiation, the molecular mechanisms of its biological effects and the signaling pathways it regulates are still poorly characterized. Here we provide a comprehensive overview of augurin-dependent signal transduction pathways. Because of their secreted nature and the potential to be manipulated pharmacologically, augurin and its derived peptides represent attractive targets for diagnostic development and discovery of new therapeutic agents for the human diseases resulting from the deregulation of the signaling cascades they modulate. From this perspective, the characterization of the precise nature of augurin derived peptides and the identification of the receptor(s) on the cell surface conveying augurin signaling to downstream effectors are crucial to develop agonists and antagonists for this protein. Video abstract.


Assuntos
Hormônios Peptídicos , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/metabolismo , Proteoma , Transdução de Sinais
3.
Int J Cancer ; 153(1): 210-223, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971100

RESUMO

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a high risk of relapse and metastatic spread. The actin-bundling protein fascin (FSCN1) is overexpressed in aggressive ACC and represents a reliable prognostic indicator. FSCN1 has been shown to synergize with VAV2, a guanine nucleotide exchange factor for the Rho/Rac GTPase family, to enhance the invasion properties of ACC cancer cells. Based on those results, we investigated the effects of FSCN1 inactivation by CRISPR/Cas9 or pharmacological blockade on the invasive properties of ACC cells, both in vitro and in an in vivo metastatic ACC zebrafish model. Here, we showed that FSCN1 is a transcriptional target for ß-catenin in H295R ACC cells and that its inactivation resulted in defects in cell attachment and proliferation. FSCN1 knock-out modulated the expression of genes involved in cytoskeleton dynamics and cell adhesion. When Steroidogenic Factor-1 (SF-1) dosage was upregulated in H295R cells, activating their invasive capacities, FSCN1 knock-out reduced the number of filopodia, lamellipodia/ruffles and focal adhesions, while decreasing cell invasion in Matrigel. Similar effects were produced by the FSCN1 inhibitor G2-044, which also diminished the invasion of other ACC cell lines expressing lower levels of FSCN1 than H295R. In the zebrafish model, metastases formation was significantly reduced in FSCN1 knock-out cells and G2-044 significantly reduced the number of metastases formed by ACC cells. Our results indicate that FSCN1 is a new druggable target for ACC and provide the rationale for future clinical trials with FSCN1 inhibitors in patients with ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Animais , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Peixe-Zebra
4.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835002

RESUMO

Steroidogenic factor-1 (SF-1, also termed Ad4BP; NR5A1 in the official nomenclature) is a nuclear receptor transcription factor that plays a crucial role in the regulation of adrenal and gonadal development, function and maintenance. In addition to its classical role in regulating the expression of P450 steroid hydroxylases and other steroidogenic genes, involvement in other key processes such as cell survival/proliferation and cytoskeleton dynamics have also been highlighted for SF-1. SF-1 has a restricted pattern of expression, being expressed along the hypothalamic-pituitary axis and in steroidogenic organs since the time of their establishment. Reduced SF-1 expression affects proper gonadal and adrenal organogenesis and function. On the other hand, SF-1 overexpression is found in adrenocortical carcinoma and represents a prognostic marker for patients' survival. This review is focused on the current knowledge about SF-1 and the crucial importance of its dosage for adrenal gland development and function, from its involvement in adrenal cortex formation to tumorigenesis. Overall, data converge towards SF-1 being a key player in the complex network of transcriptional regulation within the adrenal gland in a dosage-dependent manner.


Assuntos
Carcinoma Adrenocortical , Fator Esteroidogênico 1 , Humanos , Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Fatores de Transcrição Fushi Tarazu , Proteínas de Homeodomínio , Fator Esteroidogênico 1/metabolismo , Fatores de Transcrição/metabolismo
7.
Cancer Metastasis Rev ; 40(1): 89-140, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33471283

RESUMO

Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.


Assuntos
Neoplasias , Transdução de Sinais , Transporte Biológico , Citoesqueleto/metabolismo , Humanos , Microtúbulos/metabolismo , Neoplasias/metabolismo
8.
J Clin Endocrinol Metab ; 104(5): 1712-1724, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476173

RESUMO

CONTEXT: Novel tumor markers are urgently needed to better stratify adrenocortical cancer (ACC) patients and improve therapies for this aggressive neoplasm. OBJECTIVE: To assess the diagnostic and prognostic value of the actin-bundling protein fascin-1 (FSCN1) in adrenocortical tumors. DESIGN, SETTING AND PARTICIPANTS: A local series of 37 malignant/37 benign adrenocortical tumors at Careggi University Hospital and two independent validation ACC cohorts (Cochin, TCGA) from the European Network for the Study of Adrenal Tumors were studied. MAIN OUTCOME MEASURES: FSCN1 expression was quantified by immunohistochemistry, Western blot and quantitative RT-PCR in ACC specimens; overall and disease-free survival associated with FSCN1 expression were assessed by Kaplan-Meier analysis and compared with that of Ki67 labeling index and tumor stage. RESULTS: Despite the low diagnostic power, in the Florence ACC series, FSCN1 immunohistochemical detection appeared as an independent prognostic factor, also refining results obtained with staging and Ki67 labeling index. The robust prognostic power of FSCN1 levels was further confirmed in two independent ACC cohorts. A positive correlation was found between FSCN1 and steroidogenic factor-1 (SF-1), with a substantially higher expression of both factors in ACCs at advanced stages and with at least one of the three Weiss score parameters associated with invasiveness. Moreover, we demonstrated FSCN1 role in promoting cell invasion in a human ACC cell line only in the case of increased SF-1 dosage. CONCLUSIONS: These findings show that FSCN1 is a novel independent prognostic marker in ACC and may serve as a potential therapeutic target to block tumor spread.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/patologia , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Adolescente , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/cirurgia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Adulto Jovem
9.
Oncotarget ; 9(12): 10228-10246, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535802

RESUMO

Membrane trafficking via the Golgi-localised KDEL receptor activates signalling cascades that coordinate both trafficking and other cellular functions, including autophagy and extracellular matrix degradation. In this study, we provide evidence that membrane trafficking activates KDEL receptor and the Src family kinases at focal adhesions of HeLa cells, where this phosphorylates ADP-ribosylation factor GTPase-activating protein with SH3 domain, ankyrin repeat and PH domain (ASAP)1 and focal adhesion kinase (FAK). Previous studies have reported extracellular matrix degradation at focal adhesions. Here, matrix degradation was not seen at focal adhesions, although it occurred at invadopodia, where it was increased by KDEL receptor activation. This activation of KDEL receptor at invadopodia of A375 cells promoted recruitment and phosphorylation of FAK on tyrosines 397 and 861. From the functional standpoint, FAK overexpression inhibited steady-state and KDEL-receptor-stimulated extracellular matrix degradation, whereas overexpression of the FAK-Y397F mutant only inhibited KDEL-receptor-stimulated matrix degradation. Finally, we show that the Src and FAK activated downstream of KDEL receptor are part of parallel signalling pathways. In conclusion, membrane-traffic-generated signalling via KDEL receptor activates Src not only at the Golgi complex, but also at focal adhesions. By acting on Src and FAK, KDEL receptor increases invadopodia-mediated matrix degradation.

10.
Mol Cell Endocrinol ; 474: 57-64, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29474877

RESUMO

Many types of cancer cells present constitutively activated ER stress pathways because of their significant burden of misfolded proteins coded by mutated and rearranged genes. Further increase of ER stress by pharmacological intervention may shift the balance towards cell death and can be exploited therapeutically. Recent studies have shown that an important component in the mechanism of action of mitotane, the only approved drug for the medical treatment of adrenocortical carcinoma (ACC), is represented by activation of ER stress through inhibition of the SOAT1 enzyme and accumulation of toxic lipids. Here we show that HA15, a novel inhibitor of the essential ER chaperone GRP78/BiP, inhibits ACC H295R cell proliferation and steroidogenesis and is able to synergize with mitotane action. These results suggest that convergent activation of ER stress pathways by drugs acting via different mechanisms represents a valuable therapeutic option for ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/antagonistas & inibidores , Mitotano/farmacologia , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Sulfato de Desidroepiandrosterona/metabolismo , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Hidrocortisona/farmacologia
11.
Int J Cancer ; 143(1): 199-211, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29411361

RESUMO

One of the crucial challenges in the clinical management of cancer is the resistance to chemotherapeutics. We recently demonstrated that the Hedgehog receptor Patched, which is overexpressed in many recurrent and metastatic cancers, is a multidrug transporter for chemotherapeutic agents such as doxorubicin. The present work provides evidences that Patched is expressed in adrenocortical carcinoma (ACC) patients, and is a major player of the doxorubicin efflux and the doxorubicin resistance in the human ACC cell line H295R. We discovered that methiothepin inhibits the doxorubicin efflux activity of Patched. This drug-like molecule enhances the cytotoxic, pro-apoptotic, antiproliferative and anticlonogenic effects of doxorubicin on ACC cells which endogenously overexpress Patched, and thereby mitigates the resistance of these cancer cells to doxorubicin. Moreover, we report that in mice the combination of methiothepin with doxorubicin prevents the development of xenografted ACC tumors more efficiently than doxorubicin alone by enhancing the accumulation of doxorubicin specifically in tumors without obvious undesirable side effects. Our results suggest that the use of an inhibitor of Patched drug efflux such as methiothepin in combination with doxorubicin could be a promising therapeutic option for adrenocortical carcinoma, and most likely also for other Patched-expressing cancers.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Metiotepina/administração & dosagem , Receptor Patched-1/metabolismo , Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metiotepina/farmacologia , Camundongos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncotarget ; 8(51): 88257-88258, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29179432
13.
Oncotarget ; 8(31): 51050-51057, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881628

RESUMO

Adrenocortical carcinoma is a rare neoplasm with a poor prognosis. Very important advances have been made in the identification of the genetic determinants of adrenocortical carcinoma pathogenesis but our understanding is still limited about the mechanisms that determine cancer spread and metastasis. One major problem hindering preclinical experimentation for new therapies for adrenocortical carcinoma is represented by the lack of suitable animal models for metastatic disease. With the aim to overcome these limitations, in this study we tested several protocols in order to establish a mouse xenograft model of metastatic adrenocortical carcinoma. The most efficient method, based upon intrasplenic injection followed by splenectomy, produced metastases with high efficiency, whose development could be followed over time by bioluminescence measurements. We expect that the availability of this model will greatly improve the possibilities for preclinical testing of new treatments for advanced-stage disease.

14.
J Clin Endocrinol Metab ; 102(9): 3491-3498, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911143

RESUMO

Context: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with overall poor prognosis. The Ki67 labeling index (LI) has a major prognostic role in localized ACC after complete resection, but its estimates may suffer from considerable intra- and interobserver variability. VAV2 overexpression induced by increased Steroidogenic Factor-1 dosage is an essential factor driving ACC tumor cell invasion. Objective: To assess the prognostic role of VAV2 expression in ACC by investigation of a large cohort of patients. Design, Setting, and Participants: A total of 171 ACC cases (157 primary tumors, six local recurrences, eight metastases) from seven European Network for the Study of Adrenal Tumors centers were studied. Outcome Measurements: H-scores were generated to quantify VAV2 expression. VAV2 expression was divided into two categories: low (H-score, <2) and high (H-score, ≥2). The Ki67 LI retrieved from patients' pathology records was also categorized into low (<20%) and high (≥20%). Clinical and immunohistochemical markers were correlated with progression-free survival (PFS) and overall survival (OS). Results: VAV2 expression and Ki67 LI were significantly correlated with each other and with PFS and OS. Heterogeneity of VAV2 expression inside the same tumor was very low. Combined assessment of VAV2 expression and Ki67 LI improved patient stratification to low-risk and high-risk groups. Conclusion: Combined assessment of Ki67 LI and VAV2 expression improves prognostic prediction in ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/sangue , Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/sangue , Carcinoma Adrenocortical/mortalidade , Biomarcadores Tumorais/sangue , Proteínas Proto-Oncogênicas c-vav/metabolismo , Neoplasias do Córtex Suprarrenal/terapia , Carcinoma Adrenocortical/terapia , Adulto , Idoso , Análise de Variância , Biópsia por Agulha , Estudos de Coortes , Terapia Combinada , Intervalo Livre de Doença , Europa (Continente) , Feminino , Humanos , Imuno-Histoquímica , Internacionalidade , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Valor Preditivo dos Testes , Prognóstico , Proteínas Proto-Oncogênicas c-vav/sangue , Análise de Sobrevida , Resultado do Tratamento
15.
Sci Signal ; 10(469)2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270555

RESUMO

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a dismal prognosis. Genomic studies have enabled progress in our understanding of the molecular bases of ACC, but factors that influence its prognosis are lacking. Amplification of the gene encoding the transcription factor steroidogenic factor-1 (SF-1; also known as NR5A1) is one of the genetic alterations common in ACC. We identified a transcriptional regulatory mechanism involving increased abundance of VAV2, a guanine nucleotide exchange factor for small GTPases that control the cytoskeleton, driven by increased expression of the gene encoding SF-1 in ACC. Manipulating SF-1 and VAV2 abundance in cultured ACC cells revealed that VAV2 was a critical factor for SF-1-induced cytoskeletal remodeling and invasion in culture (Matrigel) and in vivo (chicken chorioallantoic membrane) models. Analysis of ACC patient cohorts indicated that greater VAV2 abundance robustly correlated with poor prognosis in ACC patients. Because VAV2 is a druggable target, our findings suggest that blocking VAV2 may be a new therapeutic approach to inhibit metastatic progression in ACC patients.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-vav/genética , Fator Esteroidogênico 1/genética , Adolescente , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Citoesqueleto/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-vav/metabolismo , Fator Esteroidogênico 1/metabolismo , Análise de Sobrevida , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-27065945

RESUMO

The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes.

17.
Oncotarget ; 6(5): 3375-93, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25682866

RESUMO

We recently identified an endomembrane-based signalling cascade that is activated by the KDEL receptor (KDELR) on the Golgi complex. At the Golgi, the KDELR acts as a traffic sensor (presumably via binding to chaperones that leave the ER) and triggers signalling pathways that balance membrane fluxes between ER and Golgi. One such pathway relies on Gq and Src. Here, we examine if KDELR might control other cellular modules through this pathway. Given the central role of Src in extracellular matrix (ECM) degradation, we investigated the impact of the KDELR-Src pathway on the ability of cancer cells to degrade the ECM. We find that activation of the KDELR controls ECM degradation by increasing the number of the degradative structures known as invadopodia. The KDELR induces Src activation at the invadopodia and leads to phosphorylation of the Src substrates cortactin and ASAP1, which are required for basal and KDELR-stimulated ECM degradation. This study furthers our understanding of the regulatory circuitry underlying invadopodia-dependent ECM degradation, a key phase in metastases formation and invasive growth.


Assuntos
Matriz Extracelular/metabolismo , Complexo de Golgi/metabolismo , Neoplasias/metabolismo , Receptores de Peptídeos/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Cortactina/metabolismo , Ativação Enzimática , Humanos , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Podossomos/metabolismo , Interferência de RNA , Receptores de Peptídeos/genética , Transfecção , Proteínas de Transporte Vesicular/genética , Quinases da Família src/metabolismo
18.
Mol Cell Endocrinol ; 408: 138-44, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25449416

RESUMO

SF-1 and LRH-1 are transcription factors that belong to the NR5A family of nuclear receptors that both have an essential role during development. Recent studies at the genome-wide scale have enabled the characterization of the cistrome and transcriptome regulated by SF-1 and LRH-1 in different cell lines and tissues. Those studies have allowed us to make a significant leap forward in our understanding of the mechanisms of transcriptional regulation of NR5A nuclear receptors in stem cells and cancer.


Assuntos
Regulação da Expressão Gênica , Genômica , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica , Animais , Humanos , Modelos Genéticos , Especificidade de Órgãos/genética
19.
Cell Mol Life Sci ; 72(6): 1209-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25292337

RESUMO

Protein mono-ADP-ribosylation is a reversible post-translational modification of cellular proteins. This scheme of amino-acid modification is used not only by bacterial toxins to attack host cells, but also by endogenous ADP-ribosyltransferases (ARTs) in mammalian cells. These latter ARTs include members of three different families of proteins: the well characterised arginine-specific ecto-enzymes (ARTCs), two sirtuins, and some members of the poly(ADP-ribose) polymerase (PARP/ARTD) family. In the present study, we demonstrate that human ARTC1 is localised to the endoplasmic reticulum (ER), in contrast to the previously characterised ARTC proteins, which are typical GPI-anchored ecto-enzymes. Moreover, using the "macro domain" cognitive binding module to identify ADP-ribosylated proteins, we show here that the ER luminal chaperone GRP78/BiP (glucose-regulated protein of 78 kDa/immunoglobulin heavy-chain-binding protein) is a cellular target of human ARTC1 and hamster ARTC2. We further developed a procedure to visualise ADP-ribosylated proteins using immunofluorescence. With this approach, in cells overexpressing ARTC1, we detected staining of the ER that co-localises with GRP78/BiP, thus confirming that this modification occurs in living cells. In line with the key role of GRP78/BiP in the ER stress response system, we provide evidence here that ARTC1 is activated during the ER stress response, which results in acute ADP-ribosylation of GRP78/BiP paralleling translational inhibition. Thus, this identification of ARTC1 as a regulator of GRP78/BiP defines a novel, previously unsuspected, player in GRP78-mediated ER stress responses.


Assuntos
ADP Ribose Transferases/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , ADP Ribose Transferases/análise , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/análise , Humanos
20.
Methods Enzymol ; 534: 133-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24359952

RESUMO

Classical signal transduction is initiated at the plasma membrane by extracellular signals and propagates to the cytosolic face of the same membrane. Multiple studies have shown that endomembranes can act as signaling platforms for this plasma-membrane-originated signaling. Recent evidence has indicated that endomembranes can also trigger their own signaling cascades that involve some of the molecular players that are classically engaged in signal transduction at the plasma membrane. Endomembrane-initiated signaling is important for synchronization of the functioning of the secretory pathway and coordination of the activities of the secretory organelles with other cellular machineries. However, these endomembrane-initiated regulatory circuits are only partially understood to date. This novel field is slowed by a lack of specific tools and the objective difficulties in the study of signal transduction of endomembrane-localized receptors, as their accessibility is limited. For example, the ligand-binding site of the KDEL receptor (that transduces endomembrane signaling) is positioned in the lumen of the Golgi complex. Here we report some approaches that are suitable for the study of endomembrane-initiated signaling.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Transdução de Sinais/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Transporte Biológico , Western Blotting , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fibroblastos/citologia , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Fosforilação , Tirosina/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...